
COP 3223: C Programming (Functions – Part 4) Page 1 © Dr. Mark J. Llewellyn

COP 3223: C Programming

Spring 2009

Functions In C – Part 4

School of Electrical Engineering and Computer Science

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cop3223/spr2009/section1

COP 3223: C Programming (Functions – Part 4) Page 2 © Dr. Mark J. Llewellyn

More Using Pass-by-Reference Parameters

• In the previous section of notes, we introduced the pass-by-

reference mechanism for parameter passing and how this is

simulated in C.

• Pass-by-value causes a copy of the value of the actual

parameter to be copied (sent) to the formal parameter in the

called function.

• Pass-by-reference essentially passes the address of the actual

parameter to the formal parameter in the called function. In

the called function, the formal parameter must be a pointer

variable. When the address of the actual parameter is loaded

into the formal parameter, the formal parameter now “points

to” the same address in memory referenced by the actual

parameter.

COP 3223: C Programming (Functions – Part 4) Page 3 © Dr. Mark J. Llewellyn

int aFunction (int a, int b)

{

int result;

. . .

return a+b;

}

A called function

int x = 3, y = 6, z;

. . .

z = aFunction (x, y);

printf(“%d %d %d\n”, x, y, z);

Somewhere in a calling function

result

6

?

3

The memory

x

y

z

?

?

?a

b

Initial state

A pass-by-value example

6

?

3

The memory

x

y

z

9

6

3a

b

result

After call

but before

return

After return

6

9

3

The memory

x

y

z

9

6

3a

b

result

Prints “3 6 9”

Green filled locations not initialized or available

COP 3223: C Programming (Functions – Part 4) Page 4 © Dr. Mark J. Llewellyn

void aFunction (int *a, int *b)

{

*a = 4; //de-ref ptr var

*b = 8; //de-ref ptr var

return;

}

A called function

int x = 3, y = 6;

. . .

aFunction (&x, &y);

printf(“%d %d\n”, x, y);

Somewhere in a calling function

6

3

The memory

x

y

?

?a

b

Initial state

A pass-by-reference example

8

4

The memory

x

y

Address

of y

Address

of x
a

b

After call

but before

return

After return

8

4

The memory

x

y

?

?a

b

Prints “4 8”

Green filled locations not initialized or available

COP 3223: C Programming (Functions – Part 4) Page 5 © Dr. Mark J. Llewellyn

More With Pass-By-Reference Parameters

• Let’s write another simple program that uses a function
whose parameters are passed-by-reference.

• Will write a function that simply swaps the values of two
parameters sent to it. We’ll then later on use the same
function in another program that will allow us to sort a set
of numbers into ascending order.

• Basically, the swap function will take two parameters x
and y and interchange their values. If before calling swap
the value of x is 4 and the value of y is 6, after the call
the value of x will be 6 and the value of y will be 4.

COP 3223: C Programming (Functions – Part 4) Page 6 © Dr. Mark J. Llewellyn

Notice that the formal

parameters are pointer

variables

Notice that the actual

parameters are addresses

COP 3223: C Programming (Functions – Part 4) Page 7 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Functions – Part 4) Page 8 © Dr. Mark J. Llewellyn

Passing Arrays As Arguments

• In a function definition in C, a formal parameter that is
declared as an array is, by default, a pointer to the array.

• More specifically, it is the address of the first location in
the array. Thus, the name of the array is equivalent to
&arrayName[0].

• When an array is being passed to a function, its base
address is passed-by-value to the function. The array
elements themselves are not copied. Thus, through the
base address (address of the first element of the array)
access to all other locations in the array is available to the
function. Thus, the array locations have been passed by
reference and any changes made by the function to those
array locations are made in the one and only copy of the
array.

COP 3223: C Programming (Functions – Part 4) Page 9 © Dr. Mark J. Llewellyn

Passing Arrays As Arguments

• Standard C compilers allow array bracket notation to be
included in the function parameter list for any array
parameter, although it is not required that the brackets be
included in the formal parameter description.

• From a program/code readability point of view, it is wise
to include the brackets so that it is obvious to the reader
that an array is being used as an argument to the function.

• Thus, if we have declared int a[10];, then in a
function header int a[] is equivalent to int *a.

• Let’s write a program that passes a 1-d array to a function
and the function sums the values in the array and returns
the result to the calling function.

• Notice the difference in the function declaration and the
function call in the two versions of the program.

COP 3223: C Programming (Functions – Part 4) Page 10 © Dr. Mark J. Llewellyn

In the call, it is implied that

the address of

myNumbers[0] is being

passed to the function and

the function is accepting an

array as the first parameter.

COP 3223: C Programming (Functions – Part 4) Page 11 © Dr. Mark J. Llewellyn

In the call a direct address is

passed using the address

operator and in the function

declaration a pointer variable

is the corresponding

parameter.

COP 3223: C Programming (Functions – Part 4) Page 12 © Dr. Mark J. Llewellyn

Sorting An Array Of Integer Values

• Let’s combine both parameter passing techniques and
reuse the swap function we wrote on page 6 and develop
a program that will sort an array of integer values.

• There are many different sorting algorithms available. The
one we will use for this program is called a bubble sort.
The technique it uses is to bubble the smallest value in the
array to the first position in the array on the first pass
through the array, bubble the second smallest value in the
array to the second position in the array on the second pass
through the array, and so on.

• We’ll write a function called bubblesort that performs
the sort and calls the function swap to change the order of
any two elements in the array that are out of order
according to the sort.

COP 3223: C Programming (Functions – Part 4) Page 13 © Dr. Mark J. Llewellyn

How The Bubble Sort Works

7 3 5 6 4

Pass 1

7 3 5 4 6

7 3 4 5 6

7 3 4 5 6

3 7 4 5 6

3 7 4 5 6

Pass 2

3 7 4 5 6

3 7 4 5 6

3 4 7 5 6

Smallest number in

position 0

Smallest two values in

positions 0 and 1

COP 3223: C Programming (Functions – Part 4) Page 14 © Dr. Mark J. Llewellyn

How The Bubble Sort Works

Pass 3

3 4 7 5 6

Smallest three values in

positions 0, 1, and 2

3 4 7 5 6

3 4 5 7 6

Pass 4

3 4 5 7 6

3 4 5 6 7

Entire array sorted in 4th

(n-1) pass

COP 3223: C Programming (Functions – Part 4) Page 15 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Functions – Part 4) Page 16 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Functions – Part 4) Page 17 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Functions – Part 4) Page 18 © Dr. Mark J. Llewellyn

Practice Problems

1. Trace the execution of the bubble sort program

on pages 15 & 16 assuming that the array

initially contains the values 4, 12, 2, 5, 1.

Assume that MAX is also changed to have a
value of 5.

COP 3223: C Programming (Functions – Part 4) Page 19 © Dr. Mark J. Llewellyn

Practice Problems
2. Write a C program that uses a function to multiply every value

in an array which is passed to the function by some constant

amount. Then write a second function that prints the values that

appear in the array whenever it is called. Have the main

function read the values into the array from an input file named

input.dat, where it is unknown in advance how many values

will appear in the file (assume it will be less than 100 values).

Once the values are read into the array have the main function

call the array print function and print out the contents of the

array. Then the main function should call the function that will

modify the array values and finally have the main function once

again call the array print function to print out the values after

they have been modified.

COP 3223: C Programming (Functions – Part 4) Page 20 © Dr. Mark J. Llewellyn

Practice Problems
3. Re-write the bubble sort program so that rather than producing

an ascending sort order in the array it produces a descending

sort order (i.e., the largest number in the array will be in the 0

position). Hint: Think for a minute, this is much easier than it

might seem.

